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We have developed a three-dimensional anisotropic multigrid solver for simulating
nonlocal collisional electrostatic drift-wave turbulence in a tokamak with magnetic
shear. As an example, the solver has been used to obtain entire flux-surface solutions
of the nonlocal Hasegawa–Wakatani equations in the absence of curvature effects.
The implicit treatment of the parallel-gradient terms permits the use of a relatively
large time step. Considerable effort was made in the design of the implicit solver to
ensure that the presence of anisotropy does not lead to a significant degradation in
performance. The multigrid algorithm has several advantages over a pseudospectral
Poisson solver; most importantly, all nonlinear terms, including those in the Ohm’s
law, can be retained in a straightforward manner. Although in this work the solver is
illustrated using straightened tokamak (sheared slab) geometry, the object-oriented
construction of the code will facilitate the eventual inclusion of curvature terms
and the complete nonlinear reduced Braginskii equations, including ion thermal
dynamics. c© 2000 Academic Press

I. INTRODUCTION

Tokamaks are experimental toroidal devices for studying the feasibility of controlled
thermonuclear fusion as a relatively clean and abundant energy source for the future. They
use a combination of magnetic and electric fields to confine plasmas at very high tempera-
tures until thermonuclear fusion of the nuclei occurs. One of the major obstacles in demon-
strating the scientific feasibility of this technology is the dramatic reduction in confinement
that results from the heat and particle transport associated with small-scale turbulent fluctu-
ations. The goal of modern plasma turbulence theory is to understand and ultimately control
thisanomalous transport.

In this work we describe a three-dimensional simulation of collisional electrostatic drift
waves [1, 2]. These instabilities are thought to play a important role in the outer edge regions
of tokamaks, where the temperature is low enough for collisionality to dominate. The
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equations that describe drift-waves are nonlocal (the coefficients of the partial derivatives
vary in space) so that discrete Fourier transform methods cannot be used to invert the Laplace
operator that arises. The curvilinear geometry, anisotropy, and the sheared magnetic field
introduce further complications, all of which may be handled in a natural way with a
multigrid solver. The problem of computing turbulent transport in a tokamak reactor thus
provides an excellent example of the advantages of multigrid methods over conventional
spectral methods.

We begin in Section II with a general discussion of the geometry, equations, and boundary
conditions for the Hasegawa–Wakatani drift-wave model. Then, in Section III, we describe
and benchmark our multigrid algorithm against a pseudospectral Poisson solver for a local
version of the equations. Nonlocal simulation results of our multigrid code, in the absence
of magnetic shear, are presented in Section IV. Finally, in Section V, we present a simulation
of a full flux surface for a straightened tokamak with magnetic shear. We conclude with
some final remarks in Section VI.

II. HASEGAWA–WAKATANI MODEL

A. Coordinate system.The volume of the tokamak edge region to be simulated lies
between two torii of different minor radii (the volume of revolution of a poloidal annulus
about the major axis). It is convenient to introduce a transformation that maps this toroidal
geometry into a rectilinear region described by Cartesian coordinates. In this straightened
system, new terms representing curvature effects will then arise in the equations of motion.
For simplicity these geometrical effects are neglected in this work; however, the eventual
inclusion of curvature effects and magnetic field gradients, both crucial to physics of the
ballooning-mode [3, 4], should be relatively straightforward.

In the straightened geometry, we represent the minor radius coordinate byx, the poloidal
direction byy, and the toroidal direction byz. Tokamak magnetic fields are characterized
by both poloidal and toroidal components, so that the magnetic field lines twist around the
surface of the torus. The amount of twist depends on the radial coordinatex; the resulting
magnetic shearis an important damping mechanism for drift-wave turbulence. Since the
dynamics of drift-wave turbulence tends to vary only weakly in the direction of the magnetic
field, it is numerically advantageous to introduce a new coordinate system(x′, y′, z′) that is
aligned with the magnetic field direction instead of the toroidal direction, such thatz′ is al-
ways parallel to the local magnetic fieldB [4–7]. For the case of the prototypical sheared field

B = B0(ẑ− αxŷ), (1)

the appropriate transformation is

x′ = x, (2a)

y′ = y+ αzx, (2b)

z′ = z. (2c)

Upon denoting(x′, y′, z′) by (x0, x1, x2), the contravariant basis vectorsei = ∂r/∂xi

corresponding to the coordinate transformation Eq. (2) may be expressed as

e0 = x̂ − αzŷ, (3a)
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e1 = ŷ, (3b)

e2 = ẑ− αxŷ, (3c)

wherex̂, ŷ, andẑare the Cartesian unit vectors in thex, y, andzdirections, respectively. The
numerical discretizations are then performed with respect to the computational coordinates
(x′, y′, z′), using the contravariant basis(e0, e1, e2).

Note thate2 is in the direction of the magnetic field, so thatB= Be2. The other two
basis vectors lie in a poloidal plane. Since the thickness of the (straightened) annulus inx
is much smaller than its extension inz, the dominant effect of magnetic shear in Eq. (3)
arises from theαz term. As is common practice, we therefore adopt the simplified transfor-
mation

e0 = x̂ − αzŷ, (4a)

e1 = ŷ, (4b)

e2 = ẑ, (4c)

thereby capturing the lowest-order effect of the shear (in the inverse-aspect ratio). The
corresponding metric tensor, with the covariant componentsgi j = ei · ej , then reduces
to

g=

1+ α2z2 αz 0

αz 1 0

0 0 1

 . (5)

The inverse metric tensor, with componentsgi j , is

g−1 =

 1 −αz 0

−αz 1+ α2z2 0

0 0 1

 . (6)

The covariant basis vectorsei = gi j ej (summing over repeated indices) are found to be

e0 = x̂, (7a)

e1 = ŷ− αzx̂, (7b)

e2 = ẑ. (7c)

We may now compute the covariant derivative∇ .= ei ∂/∂x′i (the notation
.= is used to

emphasize definitions)

∇ .= x̂

(
∂

∂x′
+ αz

∂

∂y′

)
+ ŷ

∂

∂y′
+ ẑ

∂

∂z′
, (8)

of which the part perpendicular tôz is just

∇⊥ .= x̂

(
∂

∂x′
+ αz

∂

∂y′

)
+ ŷ

∂

∂y′
, (9)
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or, equivalently,

∇⊥ .= e0

(
∂

∂x′
+ αz

∂

∂y′

)
+ e1

[
αz

∂

∂x′
+ (1+ α2z2)

∂

∂y′

]
. (10)

We also define the component of the gradient parallel toẑ,∇‖ .= ∂/∂z′.
The divergence of a vectorA may be expressed generally as

∇ · A .= g−1/2 ∂

∂xi

(
g1/2Ai

)
, (11)

where in our caseg= det|g| evaluates to 1. The perpendicular and parallel divergences
∇⊥ · A and∇‖ ·A, respectively, are thus

∇⊥ · A .= ∂

∂x′
A0+ ∂

∂y′
A1, (12a)

∇‖ · A .= ∂

∂z′
A2. (12b)

B. Nonlocal equations. For nonlocal simulation of resistive drift-wave turbulence, we
normalize the coordinates(x, y, z, t) to (ρs, ρs, L‖, Ä−1

i ) and the total potential and density
fields(φ, n) to (Te/e, n̄). Hereρs= cs/Äi , Äi = eB/(mi c), cs= (Te/mi )

1/2, Te is the elec-
tron temperature,mi is the ion mass,L‖ = ρs[B/(ecη‖n̄)]1/2, andn̄ is some characteristic
density. In this normalization, the coupled set of equations for the potential and density
studied by Hasegawa and Wakatani [1] appear as

∇⊥ ·
(

n
d

dt
∇⊥φ

)
+∇‖ ·

(
∇‖φ − ∇‖n

n

)
= Dφ∇4

⊥φ, (13a)

dn

dt
+∇‖ ·

(
∇‖φ − ∇‖n

n

)
= Dn∇2

⊥n, (13b)

where

d

dt
= ∂

∂t
+ ẑ×∇φ · ∇. (14)

To evolve Eqs. (13) in the twisted coordinate system (2) we need to compute the density-
weighted Laplacian

∇⊥ · (n∇⊥φ) .=
(
∂

∂x′
+ αz

∂

∂y′

)
n

(
∂

∂x′
+ αz

∂

∂y′

)
φ + ∂

∂y′
n
∂

∂y′
φ (15)

and theE×B advection velocity

v .= ẑ×∇φ = e1

(
∂φ

∂x′
+ αz

∂φ

∂y′

)
− (e0+ αze1)

∂φ

∂y′
= −e0

∂φ

∂y′
+ e1

∂φ

∂x′
. (16)

The form of the latter result is anticipated, in view of the scalar invariance of the advective
nonlinearityv · ∇ under linear transformation.

C. Boundary conditions. In straightened tokamak coordinates, we impose a Dirichlet
condition on the densityn = n̂(x, y, z),

n̂(xmin, y, z) = nmax, n̂(xmax, y, z) = nmin ∀ y, z. (17)
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This prescription appears also as a Dirichlet condition if we expressn = n(x′, y′, z′) in the
twisted coordinates (2),

n(x′min, y′, z′) = nmax, n(x′max, y′, z′) = nmin ∀ y′, z′. (18)

In imposing these density values at thex′ boundaries, one must be careful to avoid introduc-
ing artificially large density gradients. This can be accomplished by adopting a boundary
condition onφ that is compatible with the particle fluxes required to maintain the imposed
density differential. Upon noting that Eq. (18) is consistent with the requirement of zero
E×B advection in the directione1 (=ŷ) at thex′ boundaries, we stipulate thatv · e1= 0
at both boundaries, so that the advection at the boundaries is purely in thee0 direction.
Equation (16) then requires that

∂

∂x′
φ(x′min, y′, z′) = 0,

∂

∂x′
φ(x′max, y′, z′) = 0 ∀ y′, z′. (19)

A self-consistentE×B velocity (physically responsible for maintaining the imposed density
profile) then arises naturally from this Neumann boundary condition onφ in thex′ direction.1

In y andz, the boundary conditions on the state vectorû .= (φ, n) are doubly periodic:

û(x, ymin, z) = û(x, ymax, z) ∀ x, z (20)

and

û(x, y, zmin) = û(x, y, zmax) ∀ x, y. (21)

Upon expressinĝu(x, y, z)= u(x′, y′, z′) the transformed boundary conditions are found
to be [4–6, 8]

u(x′, y′min, z
′) = u(x′, y′max, z

′) ∀ x′, z′ (22)

and

u(x′, y′, z′min) = u(x′, y′ + αx′(z′max− z′min), z
′
max) ∀ x′, y′. (23)

In the numerical implementation, linear interpolation is used to implement the parallel
boundary condition (23).

D. Local approximation. In many simulations of the Hasegawa–Wakatani equations,
the restrictionn= 1+ L−1

n (x− x0)+ ñ (wherex0 is thex-coordinate of the center of the
box,x− x0¿ Ln, andñ¿ 1) is imposed to allow Eqs. (13) to be approximated by

d

dt
∇2
⊥φ +∇2

‖ (φ − ñ) = Dφ∇4
⊥φ, (24a)

dñ

dt
+∇2

‖ (φ − ñ) = Dn∇2
⊥ñ+ L−1

n φy. (24b)

1 In practice, it is convenient in the implicit solver discussed below to use a Dirichlet condition in thex′ direction
for bothφ andn. The Neumann boundary onφ is enforced only when evaluating the perpendicular derivatives
in the nonlinear source routine; the computed boundary values are then used to satisfy the Dirichlet condition
required by the implicit solver during subsequent time steps.
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The code described in the following section permits the solution of the full equations (13),
allowing it to be used to obtain self-consistent turbulence-driven profiles. However, the
extra terms in Eqs. (13) not present in Eqs. (24) may be switched off (and the diamagnetic
term L−1

n φy enabled) to facilitate comparison with other local simulations.

III. NUMERICAL IMPLEMENTATION

The coupled equations Eq. (13) are solved as an initial value problem, using a general-
purpose object-oriented code calledTriad, written in C++. The kernel routines of this code
implement operations that are common to a wide class of dynamical problems, for example,
parameter input, parsing, generic integration algorithms, dynamic-time step adjustment, a
restart facility, and error handling. Further details ofTriad will be described elsewhere.

A. Finite differencing. For the purposes of numerical discretization, Eqs. (13) may
be rewritten in a flux-conservative form by exploiting the solenoidal nature of theE×B
velocityv .= ẑ×∇φ,

∇⊥ ·
(

n
∂

∂t
∇⊥φ

)
+∇⊥ · [n∇⊥ · (v∇⊥φ)] +∇‖ ·

(
∇‖φ − ∇‖n

n

)
= Dφ∇4

⊥φ − Hv
{∇2
⊥φ
}
, (25a)

∂n

∂t
+∇⊥ · (vn)+∇‖ ·

(
∇‖φ − ∇‖n

n

)
= Dn∇2

⊥n− Hv{n}. (25b)

Besides having better conservation properties, this form can be expressed relatively simply
in our twisted coordinate system, with the effect of shear entering explicitly only through
the∇⊥ operator, given in contravariant form by Eq. (10).

The velocity-dependent hyperviscosity operatorHv introduced in Eqs. (25) minimizes
the range of scales devoted to modeling small-scale dissipation. It is designed to absorb the
directly cascading enstrophy and internal energy at the grid scale in a manner that emulates
(in one dimension) the stabilizing effect of an upwind scheme on convective equations.
Following Ref. [3], we evaluate the spatial derivatives in Eq. (25) to fourth order and adopt
the hyperviscosity operator

Hv
.= H

(
vx,1x,

∂

∂x

)
+ H

(
vy,1y,

∂

∂y

)
, (26)

where

H

(
vx,1x,

∂

∂x

)
= µ1x3 ∂

∂x
|vx| ∂

3

∂x3
. (27)

However, the hyperviscosity was implemented here to higher order than in Ref. [3], by
writing it as a correction to the perpendicular fluxes. The third-order derivatives appearing
in these flux corrections were evaluated to fourth-order using the formula

F ′′′(x) = 1

213
[−F(x − 21)+ 2F(x −1)− 2F(x +1)+ F(x + 21)]. (28)

The valueµ= 0.25 was found to be sufficient to avoid nonlinear convective instability in
all cases.
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B. Time-stepping algorithms.The codeTriad currently defines the following general-
purpose integration algorithms: first-order Euler, a second-order Predictor–Corrector
method, second-order Leapfrog, second-order Runge–Kutta, fourth-order Runge–Kutta,
and a fifth-order Cash–Karp Runge–Kutta integrator. With the exception of the Euler
method, all of these schemes supply a mechanism for dynamic adjustment of the time
step based on an internal error estimate.

To avoid unnecessary restriction of the time step by the parallel-gradient terms in Eq. (13),
we treat these terms implicitly with a trapezoidal approximation. Since this part of the
scheme is only second-order accurate in the time step, it is reasonable to adopt a second-
order scheme as the integrator for the perpendicular dynamics as well. Another reason
for not using a higher-order integration algorithm is that the convergence of the anisotropic
Poisson solver described in Subsection III.C tends to improve as the coefficient of the parallel
derivative, which is proportional to the time step, is reduced. The larger time step that would
be afforded by a higher-order integration algorithm is therefore not necessarily desirable.

For pedagogical reasons, we begin the discussion of our semi-implicit time-stepping algo-
rithm by considering thei th time step, with sizeτ , of the Euler method applied to Eq. (13),

∇⊥ · (ni−1∇⊥φi )+ τ
2
∇‖ ·

(
∇‖φi − ∇‖ni

ni

)
= ∇⊥ · (ni−1∇⊥φi−1)− τ

2
∇‖ ·

(
∇‖φi−1− ∇‖ni−1

ni−1

)
− τ∇⊥ · (ni−1ẑ×∇φi−1 · ∇∇⊥φi−1)+ τDφ∇4

⊥φi−1, (29a)

ni + τ
2
∇‖ ·

(
∇‖φi − ∇‖ni

ni

)
= ni−1− τ

2
∇‖ ·

(
∇‖φi−1− ∇‖ni−1

ni−1

)
− τ ẑ×∇φi−1 · ∇ni−1+ τDη∇2

⊥ηi−1. (29b)

Upon definingu .= (φ, n) and the transformation

T (τ )u .=
(∇⊥ · (ni−1∇⊥φ)+ τ

2∇‖ ·
(∇‖φ − n−1∇‖n

)
n+ τ

2∇‖ ·
(∇‖φ − n−1∇‖n

) )
, (30)

we may write Eq. (29) in the compact form

T (τ )ui = T (−τ)ui−1+ τSi−1, (31)

where the advective nonlinearities, treated explicitly, are incorporated into the sourceS,
along with the perpendicular dissipative terms. A generic integration routine may thus be
used to integrate Eq. (13) upon first transformingui−1 to the new variableT (−τ)ui−1, ap-
plying the integration method, and finally transforming back with the inverse transformation
T −1(τ ). The implementation of this inversion operator is described in the next section.

The generalization of Eq. (31) to a second-order predictor–corrector scheme is straight-
forward,

T (τ )ũi = T (−τ)ui−1+ τSi−1, (32a)

T (τ )ui = T (−τ)ui−1+ τ
2
(Si−1+ S̃i ), (32b)
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where the source term̃Si is evaluated at the intermediate pointũi .2 Normally, evaluations
of the transformationT and T −1 are the most computationally expensive parts of the
calculation. Other integration algorithms can be written in a similar manner, such as the
following second-order leapfrog scheme:

T (τ )ũi = T (−τ)ũi−1+ τSi−1, (33a)

T (τ )ui = T (−τ)ui−1+ τ S̃i−1. (33b)

Note that the predictor–corrector algorithm will typically execute somewhat faster than
the leapfrog scheme since it requires one less forward transformationT (−τ) but the same
number of inverse transformationsT −1(τ ).

All of the generic integration routines inTriad can in this manner be performed in a
transformed space; the user need only supply the transformation routine and its inverse.

C. Anisotropic Poisson solver.The inverse transformation in the previously described
time-stepping algorithm at thei th time step can be accomplished by inverting the anisotropic
elliptic operator

∇⊥ · (ni−1∇⊥φi )+ τ
2
∇‖ ·

(
∇‖φi − ∇‖ni

ni−1

)
= f φi , (34a)

ni + τ
2
∇‖ ·

(
∇‖φi − ∇‖ni

ni−1

)
= f n

i . (34b)

This operator, linear inni andφi , is obtained by adding the small quantityτ∇‖ · [(n−1
i −

n−1
i−1)∇‖ni ]/2 to both sides of each equation in (29). (In practice, this small correction to

the explicitly treated source term can simply be ignored.)
Equations (34) are inverted with an anisotropic multigrid solver. This solver, which is

based on anxy-zebra-surface Gauss–Seidel smoother (described in Appendix A), in turn
requires the solution of a tridiagonal equation forni and an equation forφi of the form

[∇⊥ · (ni−1∇⊥)+ ε]φi = fi , (35)

whereε is a factor proportional to the time step (the termεφi corresponds in Eq. (A4) to
the central term−2φi, j that is moved to the left-hand side and treated implicitly). Solutions
of this 2D anisotropic Poisson-like equation are obtained with a secondary multigrid solver
based on any-zebra-line Gauss–Seidel tridiagonal smoother, discussed in more detail in
Appendix A and in Refs. [9–11].

A single V-cycle iteration of the fullxy-zebra-surface Gauss–Seidel multigrid solver
typically reduces the root-mean-squareddefect(residual) by a factor of 4 or 5. Because
the solver is initialized with the values computed during the previous time step, we find
in practice that two iterations of the solver are sufficient to yield an accurate dynamical
evolution of the Hasegawa–Wakatani equations. This was tested by comparison with the
solutions obtained (i) using many multigrid iterations per time step and (ii) for the local
equations, using the pseudospectral solver described in the following subsection.

The results of the second test are depicted in Figs. 1 and 2 for a 64× 32× 16 grid corre-
sponding to a physical domain with dimensions 36ρs× 18ρs× 38L‖, using the dissipation

2 For the corrector in Eq. (32b) to be strictly second-order, theni−1 factor in Eq. (30) should be replaced by
(ni−1+ ni )/2; however, in practice the error introduced in Eq. (32b) is negligible.
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FIG. 1. Comparison of the total energy densityE for identical (a) pseudospectral and (b) multigrid runs,
with periodic boundary conditions, as well as for (c) local and (d) nonlocal multigrid runs using the boundary
conditions (18) and (19) in thex direction.

parametersDφ = Dn= 10−3. We compare the total turbulent energy densityE=〈(∇⊥φ)2+
ñ2〉 and particle flux0=−〈n∂φ/∂y〉, where〈·〉 denotes a volume average, for identical
pseudospectral and multigrid runs, in the absence of magnetic shear and using periodic
boundary conditions in all three directions. We also depict both local and nonlocal multi-
grid versions of these same runs using the Neumann/Dirichlet conditions (18) and (19) in
thex direction. The chosen density scale length,Ln= 34ρs, satisfies the local approxima-
tion only marginally and for this reason the nonlocal simulations depicted in Figs. 1 and 2
depart from the other three runs, which assume locality. One sees that even for small initial
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FIG. 2. Comparison of the flux density0 for the runs in Fig. 1.
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conditions (random values chosen uniformly from the interval [−10−3, 10−3]), the variation
with x of the coefficientn−1 in the Ohm’s Law term of Eq. (13b) has a significant effect on
the linear dynamical evolution.

D. Pseudospectral solver.Testing and benchmarking of the multigrid solver were fa-
cilitated with a pseudospectral option, which uses fast Fourier transforms (FFTs) to invert
the linear operator in Eqs. (24). This option is available only for the local equations. The
nonlinear and diamagnetic terms, however, are computed with finite differencing, just as
with the multigrid solver; this avoids the need to introduce de-aliasing points in the FFT
buffers and keeps the FFT sizes as small as possible. The linear dissipation terms may be
computed either in the spatial domain, by finite-differencing—just as with the multigrid
solver—or by multiplication in the Fourier-transformed domain.

E. Near-singular operators. With periodic boundary conditions inx andy, the opera-
tor (35) is singular whenε= 0; the solution forφ is then determined only up to an arbitrary
function ofz. It is therefore not surprising that for these boundary conditions the efficiency
of the multigrid algorithm dramatically degrades asε→ 0. However, there is a straightfor-
ward procedure to add the correctz-dependent solution to the solver result. We illustrate
the procedure under the local approximation (for our application this is the only case where
periodic boundary conditions inx are relevant).

Let us rewrite the local version of Eq. (34) (replacingni−1 by unity) as

L
(
φ

n

)
=
(

fφ
fn

)
. (36)

Because of the near-singularity of the perpendicular part of this operator, the solver returns
a solution(ξ, η) approximating not the exact solution(φ, n) but the contaminated solution
(φ+ g(z), n+ h(z)). At each level of the multigrid hierarchy, the unknown functionsg(z)
andh(z) may be computed by applyingL to the solver result and averaging overx andy,

〈
L
(
ξ

η

)〉
xy

=
〈(

fφ
fn

)〉
xy

+
( 1

2τ∇2
‖ (g− h)

h+ 1
2τ∇2

‖ (g− h)

)
, (37)

which, in terms of the defect(dφ, dn)
.=L(ξ, η)− ( fφ, fn), leads to the equations

h = 〈dn − dφ〉xy, (38a)
τ

2
∇2
‖ (g− h) = 〈dφ〉xy. (38b)

Evaluation ofg requires the inversion of a 1-dimensional Poisson equation, which is readily
accomplished with a tridiagonal solver. Upon subtracting the correction(g, h) from the
solver result, one obtains an iteration that converges to the true solution(φ, n).

F. Performance. Our algorithm has distinct advantages relative to a fully pseudospec-
tral Poisson solver. While on a scalar machine the computation time for a single iteration3

of the multigrid solver applied to Eqs. (24) is about the same as for a pseudospectral code,

3 One or two iterations of the solver is normally adequate, as described in Subsection III.C.



ELECTROSTATIC DRIFT-WAVE TURBULENCE 249

a multigrid solver should parallelize more effectively over a distributed memory archi-
tecture. This is because the implementation of a multidimensional fast Fourier transform
on a distributed memory system effectively requires a matrix transposition, entailing high
communication costs. A multigrid algorithm can also handle more realistic boundary con-
ditions, such as Eqs. (18), (19), and (23). Furthermore, all nonlinear terms can be retained
in a straightforward manner; in contrast, pseudospectral solvers require linearization of the
ni−1 factor appearing in Eq. (35). Finally, we mention that for a large number of modesN,
the scaling of the multigrid method,O(N), is formally better than that of the fast Fourier
transform,O(N ln N).

While the execution time for a single time step of our semi-implicit algorithm is not
substantially greater than that for an explicit code (based on a 2D Poisson solver), we have
found that the implicit treatment of the parallel-gradient terms permits a larger time step
(typically more than a factor of 10 larger). For the nonlocal reference case depicted in Figs. 1
and 2, we compared the results obtained with explicit and implicit treatment of the parallel
terms. We found no significant differences in the evolution of the flux and energy density.
The fact that the explicit scheme required a time step 25 times smaller than that required
by the implicit method is a signature of the existence of a strongly damped mode. Instead
of exactly resolving the decay of this mode, the implicit algorithm makes sure that it never
gets excited.

In the interest of easy program maintenance and reusable code, the object-oriented C++

programming language appeared to be an excellent choice for this project. The perfor-
mance of this language was carefully evaluated before proceeding. It was found that if
certain programming practices were adhered to (such as avoiding constructor calls and
dynamic memory allocation in the middle of loops), the performance of C++ can equal
that of code written in Fortran. For example, an efficient array class written in C++ was
used to compute a Laplacian; the speed of the routine was found to be within 8% of the
performance of optimized Fortran-77 code. Time profiling ofTriad showed that by far
the most computationally expensive part of the code is the computation of a modified 3-
dimensional Laplacian operator in the defect routine of the primary multigrid solver. By
benchmarking this time-critical section of code in both C++ and Fortran, we were able to
establish that there is no significant loss of performance in using C++ for this application.
In a few places, it was nevertheless necessary to hand-optimize operations on user-defined
objects by expressing them explicitly in terms of operations on their components (e.g.,
writing a complex equation explicitly in terms of its real and imaginary parts). The origin of
this problem is that most existing C++ compilers currently write intermediate user-defined
objects to memory instead of retaining them where possible in CPU registers.4

IV. NONLOCAL SIMULATION

In Figs. 3–5 we illustrate typicalxy-cross sections of the electrostatic potential and
density that were obtained with the multigrid solver applied to the Hasegawa–Wakatani

4 One exception to this is the KAI C++ to C translator, which has been designed for high-performance comput-
ing and is available for many workstations and also for parallel computers like the Cray T3E. The authors hope
that future improvements to native C++ compilers will allow class data to be retained in CPU registers, allowing
time-critical sections of code to be expressed compactly, in accordance with the object-oriented philosophy of the
C++ language and without the need for intermediate translators.
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FIG. 3. Nonlocal simulation ofφ (left) andn (right) att = 1000Äi . Black denotes low values.

FIG. 4. Nonlocal simulation ofφ (left) andn (right) att = 3000Äi .
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FIG. 5. Nonlocal simulation ofφ (left) andn (right) att = 1.2× 104Äi .

model in the absence of magnetic shear. These snapshots correspond to the linear, turbu-
lent, and final saturated sheared-flow evolutionary stages, respectively. The stacked frames
correspond to four differentz values. A 127× 64× 4 grid was used to model a box of
size 36ρs× 18ρs× 38L‖, using the boundary conditions of Subsection II.C, the dissipa-
tion parametersDφ = Dn= 10−4, and the density scale length and initial conditions of
Subsection III.C. The density and potential profiles att = 1.2× 104Äi are depicted in
Fig. 6.
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FIG. 6. Density and potential profiles corresponding to Fig. 5.
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V. FLUX SURFACE SIMULATION

Because of the enormous number of poloidal modes that are required for a full flux
surface treatment of drift-wave turbulence in a tokamak, most previous simulations have
been confined to a narrow flux-tube region enclosing a magnetic field line as it winds
around the torus. LetBT and BP be the strengths of the toroidal and poloidal magnetic
fields andR anda be the major and minor radii of the tokamak, respectively. If the ratio
q=aBT/(RBP) (for which the isosurfaces are flux surfaces) is a rational numberm/n,
then after following the field linem times around the toroidal direction, the field line will
have maden poloidal circuits. To avoid following the field line the full periodicity length
2πm R, flux-tube simulations follow the field line only for one poloidal circuit, a distance
of 2πq R, somewhat misleadingly known as theconnection length. After one connection
length the field line does not return to the same toroidal location (unlessn= 1) and therefore,
since the turbulence correlation length in the parallel direction is typically larger than the
connection length (see Fig. 8), a number of researchers [4, 6, 12] have introducedextended
flux-tube models, in which the flux tube is followed further, a least a parallel correlation
length. For example, Zeileret al. followed the field line three connection lengths before
they reconnected the flux tube to itself [4]. In effect, they followed the field line for about
ten toroidal circuits, whereas in a full flux surface simulation, only one toroidal circuit must
be made.

Recognizing that this savings of roughly an order of magnitude in the toroidal resolu-
tion could be transferred to the poloidal direction, we opted to use our efficient multigrid
solver to model an entire flux surface and thereby demonstrate the feasibility of nonlo-
cal full flux surface simulations of the (admittedly overly simplistic) Hasegawa–Wakatani
equations on a high-performance workstation. We adopted parameters characteristic of
the outer edge region of a deuterium L-mode plasma in the ASDEX Upgrade tokamak,
for which R= 165 cm,a= 50 cm,B= 2.2× 104 gauss,Te= 130 eV,n̄= 6.0× 1012 cm−3,
dn/dx= 2.4× 1012 cm−4, andq= 3.5. The effective atomic numberZeff was taken to be 4.
These parameters lead to the derived valuesρs = 0.075 cm,L‖ = 80.4 cm, andLn = 2.5 cm.
The boundary values of the density,nmin= 0.63 andnmax= 1.59, were chosen so that
the geometric mean of the normalized density is unity. A 31× 4096× 4 grid correspond-
ing to a physical domain with 32ρs× 4096ρs× 13L‖ (2.4 cm× 307 cm× 1045 cm) was
adopted.

The simulation was initialized with random values chosen uniformly from the interval
[−10−3, 10−3] and started with zero magnetic shear and the dissipation parametersDφ =
Dn= 10−4. To speed up the initial evolution, the coefficient in front of the parallel terms
(which restricts the linear time step) was temporarily reduced to 0.001, until the nonlinear
phase was reached. The simulation was then run further with the correct parallel coefficient
of unity, until the state shown in Fig. 7 was obtained. The long parallel correlation lengths
of the turbulence are evident in Fig. 8, where the parameter1= (z′ − zmin)/(zmax− zmin)

measures the relative distance along one toroidal circuit of the field line. Although no
curvature effects or magnetic field gradients were included in this simulation, we emphasize
the doubly periodic boundary conditions by plotting the results in toroidal geometry, using
the untwisted coordinates(x, y, z). For presentation purposes, the poloidal direction is
compressed by a factor of 4 and the aspect ratio is reduced.

The resulting nonlinear state was then used to initialize a flux-surface run with magnetic
shear, taking the shear parameterα= 2π ŝ/[q(zmax− zmin)]. Given our normalized parallel



ELECTROSTATIC DRIFT-WAVE TURBULENCE 253

FIG. 7. Toroidal projection of the electrostatic potential for a slab flux-surface simulation without magnetic
shear. Black denotes high potential.

simulation lengthzmax− zmin= 13, one computes for the typical shear coefficientŝ= 1 that
α= 0.14. For these parameters Eqs. (13) are linearly stable. However, once in a nonlinear
state, the magnetic shear only partially stabilizes the turbulence, as seen in Figs. 9 and 10:
the turbulent particle flux is diminished, but not eliminated, upon switching on the mag-
netic shear att = 0. This illustrates the well-known nonlinear instability mechanism of the
Hasegawa–Wakatani equations [12–14]. The results were qualitatively similar whether we
held the dissipation parameters fixed or reduced them both by a factor of 1000 to demon-
strate that the magnetic-shear damping mechanism is effective even when the dissipation
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FIG. 8. Density and potential parallel autocorrelation functions corresponding to Fig. 7.
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FIG. 9. Evolution of the total energy densityE and turbulent flux density0 for a flux-surface simulation upon
turning on the magnetic shear att = 0.

is very weak (as it is physically). We display in Fig. 12 the self-consistent density and po-
tential profiles and observe in Fig. 11 the extremely long parallel correlation lengths in the
final turbulent sheared-flow state. On a single-processor 600-MHz Digital Alpha PC164LX
workstation, the portion of the simulation shown in Fig. 9 required 29,000 adaptive time
steps, 300 CPU hours, and 200 MB of memory.

FIG. 10. Toroidal projection of the electrostatic potential for the sheared-slab simulation in Fig. 9 at
t = 3× 104Äi . Black denotes high potential.
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FIG. 11. Density and potential parallel autocorrelation functions corresponding to Fig. 10.

VI. CONCLUSIONS

An efficient nonlocal anisotropic multigrid solver has been successfully implemented
and tested for the Hasegawa–Wakatani Model, using a twisted coordinate system to exploit
the extremely long scale lengths along the magnetic field. In addition to illustrating the ad-
vantages of multigrid methods for the solution of partial differential equations, an important
purpose of this work was to demonstrate that nonlocal full flux surface calculations of the
Hasegawa–Wakatani equations are possible on modern high-performance workstations. In
a flux-surface model, the resolution that one saves in following a single toroidal circuit,
instead of several connection lengths, can be put into the poloidal direction. The parallel
correlation lengths that were obtained in our simulation are evidently much longer than a
connection length; however, the inclusion of ballooning physics arising from the neglected
magnetic curvature and gradient terms may change this picture.

As a final comment, we note that it appears to be possible to generalize the solver to handle
electromagnetic effects. In future work, we would like to explore this further, along with
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FIG. 12. Density and potential profiles corresponding to Fig. 10.
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incorporating curvature effects and the complete nonlinear reduced Braginskii equations (cf.
Ref. [15]), including ion thermal dynamics, into the algorithm. It should be pointed out that
realistic electromagnetic computations of tokamak edge turbulence, such as those found in
Ref. [16], necessitate the solution of equations much more complicated than Eqs. (13) and
require much longer computation times. Moreover, to gain a complete understanding of
the underlying physics, many such runs will be required. Since the flux-surface simulation
of the Hasegawa–Wakatani equations reported in this work is close to the limit of what is
practical on a modern workstation, more realistic simulations of tokamak turbulence will
undoubtedly require the use of massively parallel computers.

APPENDIX A: MULTIGRID CLASS LIBRARY

A C++ class library has been developed around a core recursive multigrid routine to
facilitate the development of one-, two-, and three-dimensional multigrid solvers (such as
the two- and three-dimensional solvers used in this work). The implementation of a complete
multigrid algorithm requires the specification of four principal components: these are the
smoother, defect, restriction, and prolongation routines [9].

Default 3d-point restriction and prolongation algorithms, whered is the dimension of
the problem, are defined in the class library. The smoother and defect, on the other hand,
must be specified by the user since these are problem dependent. However, some assistance
in developing a smoother is provided in the class library. Generally the most effective
smoothers are the pointwise or blockwise Gauss–Seidel iterations. Once the Gauss–Seidel
iteration for a given operator is coded, the user may select from the class library either a
lexicographical, red-black, or line- or surface-zebra ordering of the variables, as described
below [9]. A Jacobi iteration is also provided. A variety of predefined boundary conditions
are available in each direction and the user may also define more general conditions, such as
Eq. (23). The mesh constructed by the initialization routines is based on the type of boundary
conditions for each direction (Dirichlet, Neumann, periodic, mixed Neumann/Dirichlet),
as illustrated in Fig. 13.

1. Smoothing Iterations

Let us illustrate several of the predefined smoothers of our multigrid class library using
the pedagogical example of a centered finite-difference scheme for the two-dimensional
isotropic Poisson equation∇2

⊥φ= f ,

φi+1, j + φi, j−1− 4φi, j + φi, j+1+ φi−1, j = fi, j1
2, (A1)

where1 is the grid size, here assumed for simplicity to be the same in both directions.

(a) Jacobi. The Jacobi iteration attempts to obtain a solution to the Poisson equation
by relaxing a heat equation. Thel th damped Jacobi iterationfor Eq. (A1) is given in terms
of the previous guessφl−1,

φl
i, j := φl−1

i, j − ω
(
φl−1

i−1, j + φl−1
i, j−1− 4φl−1

i, j + φl−1
i, j+1+ φl−1

i+1, j − fi, j1
2
)
, (A2)

where the artificially introduced time stepω controls the rate of numerical relaxation. To
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FIG. 13. Grid configurations used for (a) the Dirichlet boundary conditionsφ(0)=φ0, φ(1)=φ1; (b) the
Neumann boundary conditionsφ′(0)=φ′(1)= 0; (c) the periodic boundary conditionsφ(0)=φ(1), φ′(0)=
φ′(1)or the mixed Dirichlet/Neumann boundary conditionsφ(0)=φ0,φ′(1)= 0; (d) the mixed Neumann/Dirichlet
boundary conditionsφ′(0)= 0,φ(1)=φ1. A dot denotes a computational grid point and an X designates an inactive
(ghost) point used for enforcing the boundary conditions.

obtain an effective smoothing iteration, the value ofω must be chosen carefully, based
on an analysis of the eigenvalues of the operator being inverted (for the one-dimensional
Poisson equation, the optimal value is one-half of the Courant limit for the corresponding
one-dimensional heat equation). This is discussed further in Ref. [9]. However, the Gauss–
Seidel iteration discussed next requires no stability parameter and, for elliptic operators, is
generally found to be a more effective smoother than the Jacobi iteration.

(b) Pointwise Gauss–Seidel.Thepointwise Gauss–Seideliteration for Eq. (A1) is given
by

φi, j := (φi−1, j + φi, j−1+ φi, j+1+ φi+1, j − fi, j1
2
)/

4. (A3)

It is obtained from Eq. (A1) simply by solving forφi, j in terms of fi, j and the other grid
values. Unlike for the Jacobi iteration, the ordering of the variables clearly affects the results
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since the updated values ofφ are immediately available in subsequent evaluations of the
right-hand side.

(c) Blockwise Gauss–Seidel.A blockwise Gauss–Seideliteration may also be con-
structed, by solving Eq. (A1) for an entire block of variables (such as a row or column)
using a simpler block-solver (perhaps based on an explicit solution or a lower-dimensional
multigrid solver). For example, thex-line Gauss–Seideliteration is defined by

φi−1, j − 4φi, j + φi+1, j := fi, j1
2− φi, j−1− φi, j+1. (A4)

As part of each iteration, an efficient tridiagonal solver can be used to update the values of
an entire row simultaneously. Likewise, they-line Gauss–Seideliteration is defined by

φi, j−1− 4φi, j + φi, j+1 := fi, j1
2− φi−1, j − φi+1, j . (A5)

Blockwise solvers like these, especially when combined with zebra-line ordering, are
particularly useful for anisotropic problems, where the partial derivatives in one direction
dominate. In these situations, the blocks should be chosen to be lines in the dominant
direction. Because it solves Eq. (A1) explicitly in the direction of dominance, the result-
ing blockwise Gauss–Seidel iteration is then able to relax the equation efficiently in the
subdominant direction. For example, for a three-dimensional operator possessing extreme
anisotropy in thez-direction, one would choose the blocks to bex–y planes, using a zebra
ordering of thex–y surfaces.

2. Domain Orderings

We now describe a few of the most useful orderings for second-order elliptic problems.

(a) Lexicographical. This simplest ordering of the(i, j ) values corresponds to the loop

for(i=0; i < nx; i++)

for(j=0; j < ny; j++)

GaussSeidel(i,j).

That is, one repeatedly applies the pointwise Gauss–Seidel iteration (A3), denoted here by
GaussSeidel(i, j), scanning through all(i, j ) pairs in rows, with thej index increasing
most rapidly.

(b) Red-black. In this ordering, the points are divided into two sets. One set, consisting
of points (i, j ) such thati + j is even, is labeled “red” and its complement is labeled
“black.” Equation (A3) is first applied to all of the points in the red set:

for(i=0; i < nx; i += 2)

for(j=0; j < ny; j += 2)

GaussSeidel(i,j)

for(i=1; i < nx; i += 2)

for(j=1; j < ny; j += 2)

GaussSeidel(i,j).
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On a second pass, the iteration is then applied to each of the points in the black set:

for(i=0; i < nx; i += 2)

for(j=1; j < ny; j += 2)

GaussSeidel(i,j)

for(i=1; i < nx; i += 2)

for(j=0; j < ny; j += 2)

GaussSeidel(i,j).

(c) Line-zebra. Thex-line zebraordering is defined by

for(j=0; j < ny; j += 2)

XGaussSeidel(j)

for(j=1; j < ny; j += 2)

XGaussSeidel(j),

whereXGaussSeidel(j) is thex-line Gauss–Seidel iteration (A4). Similarly, they-line
zebraordering is defined by

for(i=0; i < nx; i += 2)

YGaussSeidel(i)

for(i=1; i < nx; i += 2)

YGaussSeidel(i),

whereYGaussSeidel(i) is they-line Gauss–Seidel iteration (A5).

(d) Surface-zebra. For three-dimensional problems, one can define surface-zebra or-
derings such as thexy-surface zebraordering

for(k=0; k < nz; k += 2)

XYGaussSeidel(k)

for(k=1; k < nz; k += 2)

XYGaussSeidel(k),

whereXYGaussSeidel(k) is an xy-surface Gauss–Seidel iteration, in which the blocks
are chosen to bex–y planes. This ordering is useful for problems possessing extreme
anisotropy in thez-direction. The solution on eachx–y plane would normally be obtained
with a secondary two-dimensional multigrid solver.

3. Boundary Conditions

We now describe the predefined boundary conditions corresponding to the one-dimen-
sional grids depicted in Fig. 13. Analogous routines, which may be combined to yield a
wide variety of boundary conditions, are available in higher dimensions.

(a) Dirichlet conditions. The multigrid package assumes that the desired Dirichlet
boundary conditions are initially applied to the approximate solution given by the user.
Therefore, no additional code needs to be executed to enforce Dirichlet boundary condi-
tions in the multigrid algorithm.
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(b) Neumann conditions.The following boundary conditions are applied to the solution
and defect:

u0 = u2, (A6)

un+1 = un−1. (A7)

Heren is the number of active computational points; including the two boundary points
there are a total ofn+ 2 points.

(c) Mixed Dirichlet/Neumann conditions.There are two situations, one with Neumann
boundary conditions atxmin,

u0 = u2, (A8)

and one with Neumann boundary conditions atxmax,

un+1 = un−1. (A9)

(d) Periodic conditions. Periodic boundary conditions are implemented with the fol-
lowing assignments:

u0 = un (A10)

un+1 = u1. (A11)

ACKNOWLEDGMENTS

The authors thank Dr. B. D. Scott for discussions on drift-wave turbulence, boundary conditions, and the
multigrid method.

REFERENCES

1. A. Hasegawa and M. Wakatani, Plasma edge turbulence,Phys. Rev. Lett.50, 682 (1983).

2. W. Horton, inHandbook of Plasma Physics, edited by M. N. Rosenbluth and R. Z. Sagdeev (North-Holland,
Amsterdam, 1984), Vol. 2, Chap. 6.4, p. 383.

3. P. N. Guzdar, J. F. Drake, D. McCarthy, A. B. Hassam, and C. S. Liu, Three-dimensional fluid simulations of
the nonlinear drift-resistive ballooning modes in tokamak edge plasmas,Phys. Fluids B5, 3712 (1993).

4. A. Zeiler, D. Biskamp, J. Drake, and P. Guzdar, Three-dimensional fluid simulations of tokamak edge turbu-
lence,Phys. Plasmas3, 2951 (1996).

5. R. L. Dewar and A. H. Glasser, Ballooning mode spectrum in general toroidal systems,Phys. Fluids26, 3038
(1983).

6. M. A. Beer, S. C. Cowley, and G. W. Hammett, Field-aligned coordinates for nonlinear simulations of
tokamak turbulence,Phys. Plasmas2, 2687 (1995).

7. B. Scott, Three-dimensional computation of collisional drift wave turbulence and transport in tokamak ge-
ometry,Plasma Phys. Control. Fusion39, 471 (1997).

8. B. Scott, Global consistency for thin flux tube treatments of toroidal geometry,Phys. Plasmas5, 2334 (1998).

9. W. Hackbusch,Multi-Grid Methods and Applications, Series in Computational Mathematics (Springer-Verlag,
New York, 1985).

10. W. L. Briggs,A Multigrid Tutorial (SIAM, Philadelphia, 1987).

11. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Recipes, The Art of Scientific
Computing, 2nd ed. (Cambridge Univ. Press, Cambridge, UK, 1992).



ELECTROSTATIC DRIFT-WAVE TURBULENCE 261

12. J. F. Drake, A. Zeiler, and D. Biskamp, Nonlinear self-sustained drift-wave turbulence,Phys. Rev. Lett.75,
4222 (1995).

13. B. D. Scott, Self-sustained collisional drift-wave turbulence in a sheared field,Phys. Rev. Lett.65, 3289 (1990).

14. D. Biskamp and A. Zeiler, Nonlinear instability mechanism in 3D collisional drift-wave turbulence,Phys.
Rev. Lett.74, 706 (1995).

15. A. Zeiler, J. F. Drake, and B. Rogers, Nonlinear reduced Braginskii equations with ion thermal dynamics in
toroidal plasma,Phys. Plasmas4, 2134 (1997).

16. B. N. Rogers, J. F. Drake, and A. Zeiler, Phase space of Tokamak edge turbulence, the L-H transition, and the
formation of the edge pedestal,Phys. Rev. Lett.91, 4396 (1998).


	I. INTRODUCTION
	II. HASEGAWA–WAKATANI MODEL
	III. NUMERICAL IMPLEMENTATION
	FIG. 1.
	FIG. 2.

	IV. NONLOCAL SIMULATION
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.

	V. FLUX SURFACE SIMULATION
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.

	VI. CONCLUSIONS
	APPENDIX A: MULTIGRID CLASS LIBRARY
	FIG. 13.

	ACKNOWLEDGMENTS
	REFERENCES

